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Optimization for Fighter Aircraft Vertical-Plane
Maneuvering Using Poststall Flight

Kazuhiro Horie¤ and Bruce A. Conway†

University of Illinois at Urbana–Champaign, Urbana, Illinois 61801

A time-optimal, vertical-plane, evasive-offensive maneuver using poststall � ight is found for a � ghter aircraft
similar to an F-16. An evader aircraft initially followed by a pursuer aircraft transfers position using the vertical-
plane maneuver, becoming the pursuer. The aircraft that was initially the pursuer is assumed to continue � ight
at constant velocity and constant altitude. A direct numerical method, collocation with nonlinear programming,
proves well suited for solvingthis problem.The evader aircraft’s optimal trajectory is foundto be a cobra maneuver,
one of the vertical poststall maneuvers. Allowing the evader to use thrust vectoring yields a small improvement in
� nal time.

Nomenclature
CD = drag coef� cient
CL = lift coef� cient
D = drag force
e = unit vector directed along the longitudinal axis

of an evader
g = gravitational acceleration
h = altitude
J = cost function
L = lift force
m = mass
Nz = normal acceleration
r = position vector of a pursuer relative to an evader
S = wing area
T = thrust
t = time
v = velocity
x = downrange position
a = angle of attack
c = � ight-path angle
q = air density
s = thrust vectoring angle
s LMT = absolute value of limitation of thrust vectoring angle

Subscripts

e = value for initial evader
f = value at � nal time

Introduction

I N 1980, Herbst1 suggested that poststallmaneuverabilityshould
be one of the important design requirements for future � ghter

aircraft. He explained that poststall ability is “the ability of the air-
craft to performcontrolledtacticalmaneuversbeyondmaximum lift
angle of attack up to at least 70 degrees.” The poststall maneuver
gives an advantage of position in exchange for energy and mini-
mizes the time for a turningmaneuver.Many researchershave since
studied optimal maneuvers using the poststall � ight region. Well
et al.2 discussed a turning maneuver, a pointing maneuver, a slic-
ing maneuver, and an evasive maneuver and concluded that use of
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the poststall region minimizes required time for these maneuvers.
Bocvarov et al.3 showed a time-optimal attitude reorientationusing
the poststall region. Uehara,4 in a literature survey, discussed the
role of poststall � ight for enhancement of � ghter maneuvering. He
also pointed out the importance of using optimization theory in an
analysis of enhanced maneuvering using poststall � ight.

In 1989 the Su-27 � ghter aircraft showed a new kind of post-
stall maneuver, the cobra maneuver, at the Paris air show.5 This
maneuver demonstrated a high angle of attack and low-speed � ight
after initial rapid pitching up in the vertical plane. Zagainov6 pub-
lished the Russian study related to the cobra maneuver done by the
Su-27. He stated that the cobra maneuver has four distinguishing
characteristics: the high angle of attack, the high initial pitch rate,
the approximately 5-s maneuver time, and the large velocity loss.
He concludedthat the principal tactical advantagesof the maneuver
are that it allows weapon pointing irrespectiveof the directionof the
aircraft motion and that it reduces the maneuver space, by which he
meant that the pursuer � ies by the evader due to a high aerodynamic
deceleration.Murayama and Hull7 regarded the cobra maneuver as
“a maneuver which enables an evader to become a pursuer” and
solved it numerically. They set a condition for termination of the
cobra maneuver in which the evader transfers to a position 1000 ft
behind the initial pursuer. Some of their solutions under additional
terminal constraints were very similar to the cobra maneuver.

In this research, a minimum-time, vertical-plane, evasive–

offensivemaneuver,a maneuver in which the initial evaderbecomes
the pursuer, is studied. The method of direct collocation with non-
linearprogramming(DCNLP), which has been successfullyapplied
to many � ight-path optimization problems, is used.8 ¡ 11 The aero-
dynamic model of Murayama and Hull7 is used, and optimal tra-
jectories with some of the same initial and terminal constraints are
found,so that the resultsof usinga differentandmore robustsolution
method (DCNLP) may be determined.In addition,the improvement
in time of � ightgainedfromhaving the capabilityof thrust vectoring
is also found. The results are compared with the cobra maneuver,
one of the poststall vertical maneuvers.

Problem Formulation
An air combat scenario is set by modifying a scenario used by

Murayama and Hull.7 The initial pursuer is in � ight at constant ve-
locity and constant altitude. The initial evader, an aircraft similar
to an F-16, but which has the ability to � y in the poststall region,
can maneuver in the vertical plane. At the � nal time, the evader
transfers position and becomes able to attack the pursuer. An op-
timal trajectory for this maneuver is determined by how fast the
evader can transfer position, that is, the cost function for this opti-
mization problemis the time to completionof the evasive–offensive
maneuver. The maneuver is illustrated in Fig. 1.
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Fig. 1 Sequence of the evasive–offensive maneuver.

A set of equations of motion for the evader, a point mass model
given by Vinh,12 is modi� ed to allow only motion in a vertical plane
and to include a thrust vectoring angle s :

dv

dt
=

1
m

[T cos( a + s ) ¡ D] ¡ g sin c (1)

v
dc

dt
=

1
m

[T sin( a + s ) + L] ¡ g cos c (2)

dx

dt
= v cosc (3)

dh

dt
= v sin c (4)

where angle of attack a can take a value between 0 and 90 deg and
s ranges from ¡ s LMT to s LMT .

Because the maneuver time is very brief, the mass of the aircraft
is assumed constant. The thrust is set to be equal to the weight
of the aircraft. Aerodynamic data for the F-16-like maneuvering
aircraft are essentially the same as used by Murayama and Hull.7

A continuous approximation to their discrete tables of lift and drag
coef� cients is obtained using fourth-degree,piecewise polynomials
found using least-square � tting under the constraint that they be
continuous and at least twice differentiableeverywhere.

The lift coef� cient may be represented by

CL =

8
>>>>>><

>>>>>>:

0.0174 + 4.3329a ¡ 1.3048a 2 + 2.2442a 3

¡ 5.8517a 4(0 · a · p / 6)

¡ 1.3106 + 10.7892a ¡ 9.2317a 2 ¡ 1.1194a 3

+ 2.1793a 4( p / 6 · a · p / 3)

24.6577 ¡ 71.0446a + 83.1234a 2 ¡ 44.0862a 3

+ 8.6582a 4( p / 3 · a · p / 2) (5)

The drag coef� cient may be represented by

CD =

8
>>>>>><

>>>>>>:

0.0476 ¡ 0.1462a + 0.0491a 2 + 12.8046a 3

¡ 12.6985a 4(0 · a · p / 6)

0.5395 ¡ 5.7972a + 21.6625a 2 ¡ 21.6213a 3

+ 7.0364a 4( p / 6 · a · p / 3)

16.6957 ¡ 52.5918a + 67.3227a 2 ¡ 37.086a 3

+ 7.4807a 4( p / 3 · a · p / 2) (6)

L = 1
2
q v2SCL , D = 1

2
q v2SCD (7)

Atmospheric density, in the neighborhood of the nominal
10,000-ft altitude at which both airplanes are assumed to � y, is
given as a function of altitude by13

q = q s[1 ¡ 0.00688(h /1000)]4.256 (8)

where h is in feet and q s is the sea-level atmospheric density.

The normal acceleration of the aircraft is restricted because of
limits on structural strength and on the load a pilot can tolerate.
This restriction is introduced as a path constraint:

Nz,max ¸ Nz = (L cos a + D sin a + T sin s ) /mg (9)

This research introduces a pointing constraint as a terminal con-
straint for the evasive–offensive maneuver. The pointing constraint
requires that at the end of the maneuver the nose of the (original)
evader aircraft points toward the (original) pursuer, with at least a
given separationof the aircraft. This guarantees that the pilot of the
evader aircraft would be able to see the opponent (i.e., that the pitch
attitude of the airplane would not cause the opposing airplane to be
obscured by the nose or forward fuselage of the airplane) and, of
course,also point a weaponat the opponent.When r f represents the
position vector of the pursuer relative to the evader at the � nal time
t f , and with e being a unit vector directed along the longitudinal
axis of the evader airplane, then

r f ¢ e = k r f k k ek = k r f k (10)

Thus,

(ve t f ¡ x f ) cos( c + a ) + (he ¡ h f ) sin( c + a )

=
p

(ve t f ¡ x f )2 + (he ¡ h f )2 (11)

The separation constraint is

k r f k ¸ r f,min (12)

In addition to the pointing constraint, solutions are found with
various additional terminal constraints. One is a constraint that the
� nal velocity of the (original) evader, ve(t f ), be the same as that of
the (original) pursuer. This prevents the evader aircraft, after it has
exchanged position with the pursuing aircraft, from either rapidly
overtakingor rapidly falling behind its opponent.Also, velocityloss
should be avoided during air combat to maintain maneuverability
for another engagement. Therefore, a constraint is introduced as a
kinematic constraint:

ve(t f ) = v f (13)

Another constraint is that the � nal � ight-path angle of the evader
be zero. As we assume that the (original) pursuer � ies at a constant
altitude, the evader cannot continue following the pursuer if the
� ight-path angle is not zero. Therefore, a following constraint is
introduced as

c f = 0 (14)

Murayama and Hull7 used a � nal horizontal distance between
the evader and pursuer as a terminal constraint. In this paper, their
primary constraint is called a horizontal distance constraint. It is
expressed as

rhc = ve t f ¡ x f (15)

where rhc is the desired horizontal separation at the � nal time. In
some cases, they also applied a constraint we term the altitude
constraint

h f = he (16)

requiring the evader to return to its original altitude (which is the
same as the altitude of the original pursuer). In this work, the hori-
zontal distance constraint and/or the altitude constraint are applied
so that current results may be compared with the corresponding
Murayama and Hull7 results.

Aircraft dimensions, physical constants, and initial conditions
necessaryfor the numerical solutions are shown in Table 1. The nu-
merical solution is facilitated by converting the customary length,
time, and mass units into nondimensional units also shown in
Table 1.
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Table 1 Data and initial condition for numerical analysis

Dimensional Nondimensional
Quantities value value

Mass of aircraft m 637.16 slug 1.0
Thrust T 20,500 slug¢ ft/s2 0.80435
Air density at sea level q s 1.7556 £ 10 ¡ 3 slug/ft3 1.76340 £ 105

Gravitational acceleration g 32.174 ft/s2 0.80435
Wing area S 300.0 ft2 1.875 £ 10 ¡ 5

Max. normal acceleration Nz 9.0 g 9.0
Velocity of initial pursuer ve 400.0 ft/s 1.0
Altitude of initial pursuer he 10,000 ft 2.5
Initial distance between 1,000 ft 0.25

evader and pursuer r0
Min. � nal distance between 1,000 ft 0.25

evader and pursuer r f ,min
Initial velocity of evader v0 400.0 ft/s 1.0
Initial � ight-path angle of 0.0 rad 0.0

evader c 0
Initial horizontal position 1,000 ft 0.25

of evader x0
Initial altitude of evader h0 10,000 ft 2.5

Flight-Path Optimization
The optimal control problem may be expressed as

min
u(t)

J [x(t), u(t), t f ] (17)

subject to

Çx(t) = f[x(t ), u(t )] (18)

g[x(t ), u(t )] · 0 (19)

where x(t) is the vector of state variables and u(t ) is the vector of
control variables. Equation (18) are the equations of motion and
Eq. (19) represents a vector of inequality constraints consisting of
the bound of state and control variables, path constraints, terminal
constraint, and speci� c initial and terminal conditions.

A highly accurate DCNLP method due to Herman and Conway10

is used to convert the optimal control problem (17–19) into a non-
linear programming problem. In the DCNLP method, the total time
history is divided into segments (usually of equal duration). The
boundaries of each time segment are termed nodes; it is at these
points that discrete values of the states and controls are de� ned
(as parameters). In this research, the state time history between
nodes is assumed to be given by a � fth-degreepolynomial(in time).
Herman and Conway10 showed that this DCNLP is equivalent to
integrationusing a � fth-degreeGauss–Lobatto quadraturerule. The
high-degreepolynomialapproximationcharacterizesthis methodas
much more accurate than the standard DCNLP.

The maneuver period is divided into 20 equal segments. The six
quantities necessary to uniquely specify a � fth-degree polynomial
are available as the values of the states and the value of the slope
of the polynomial at the left, center, and right sides of the seg-
ment. The state and control variables are discretized to specify a
� fth-degree polynomial for each segment. The set of parameters to
be optimized, P, consists of discretized state variables, discretized
control variables, and total time t f , i.e.,

P = {x(t0), x(tc,0), x(t1), x(tc, 1), x(t2), . . . , x(tc,n ¡ 1), x(tn ), u(t0),

u(t1,0), u(tc, 0), u(t2,0), u(t1), u(t1,1), u(tc, 1), u(t2,1),

u(t2), . . . , u(t2,n ¡ 1), u(tn ), t f } (20)

where ti is the time at the ith node; tc,i is the time at the center of the
(i + 1)th segment; t1, i and t2,i are times within the (i + 1)th segment,
to the left and right of the center of the segment, respectively; and
tn and t f are both the � nal time.10

The optimal solution is found in variable space P under con-
straints. Because all constraints are described in algebraic form,

Eqs. (17–19) can be rewritten as the nonlinear programming prob-
lem:

min
P

J (P) (21)

subject to

h(P) · 0 (22)

Equation (22) consists of a set of nonlinear constraints that, if
satis� ed, includeor are equivalentto integrationof the system equa-
tions across the i th segment using the � fth-degree Gauss–Lobatto
integration rule,10 the bounding of state and control variables, path
constraints, terminal constraints, and speci� c initial and terminal
conditions. A set of parameters satisfying Eqs. (21) and (22) is a
solution of the optimal control problem.

NZSOL14 is used to solve the nonlinear programming problem
just introduced.A Hewlett–Packard C-160 computer is used to im-
plement the numerical optimization.

Results and Discussion
Optimal � ight paths are found for three different combinations

of terminal constraints; all of the solutions include the constraint
on vertical acceleration (9) and all assume that the aircraft that is
initiallythepursuermaintainsconstantlevel � ight.Both a feasibility
parameter and an optimality tolerance parameter in NZSOL are set
at 10 ¡ 8 . The use of DCNLP gives convergent solutions without
special treatments for all cases.

The result of applying the pointing constraint given by Eqs. (11)
and (12) is shown in Figs. 2 and 3. Figures 2 and 3 show that the
maneuver may be divided into three phases. In the � rst phase, the
evader has an angle of attack between 40–80 deg and establishes a
climb. In the second phase, the evader aircraft has a 90-deg angle of
attack and experiences dramatic aerodynamic deceleration. In the
third phase the aircraft establishes an angle of attack of 0 deg, be-
gins to descend, and � nally points its longitudinal axis toward its

Fig. 2 Velocity history for case with pointing constraint alone.

Fig. 3 Control variables history for case with pointing constraint
alone.
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target, the (original) pursuer aircraft.This result includes two of the
characteristics of the cobra maneuver, the high angle of attack and
the large velocity loss. The maneuver time of about 2 s is essen-
tially the same as the cobra maneuver time described by Zagainov.6

Physically, the � rst two phases are explained as phases for rapid
deceleration so that the evader will be passed by the pursuer. By
establishing a positive � ight-path angle by the nose-up motion, the
evader decelerates using drag but also gravity. After establishing
suf� cient � ight-path angle, the evader maximizes drag force with a
vertical attitude. After enough deceleration, the evader takes a zero
angle of attack so that it can satisfy the pointing terminal constraint.
The deceleration,from an initial speed of 400 ft/s, is very rapid, and
although some speed is recovered in the third phase, the airplane
ends with a speed less than 200 ft/s, as seen in Fig. 2. When the use
of thrust vectoring is permitted, the decelerationduring the � rst two
phases is supplementedby choosing a full positive thrust vectoring
angle, as seen in Fig. 3. The � nal time for the maneuver using thrust
vectoring is 8.24 s, in the case of a thrust vectoring authority of
20 deg, whereas that without thrust vectoring is 9.16 s. The maxi-
mum normal acceleration is around 5.1 g and does not violate the
path constraint.Figure 4 shows the trajectoriesof the two aircraft for
a case using thrust vectoring capability, as well as how the evader
becomes the pursuer.

Adding the kinematic constraint [Eq. (13)] to the pointing con-
straint [Eqs. (11) and (12)] yields results shown in Figs. 5 and 6. The
requirement of Eq. (13) that the � nal speed of the (original) evader
match the constant speed of the (original) pursuer, 400 ft/s, yields a
substantially different � ight path from that of the earlier case, that
is, the evader descends instead of climbing. Figure 6 shows that
there are still three different phases to the maneuver, but they are
differentfrom thoseof the earlier case having only the pointingcon-
straint, which was shown in Fig. 3. The � rst phase is the vertical
phase for taking a maximum drag force. The airplane stands on its
tail immediately, rather than gradually as in Fig. 3. Next, the evader
takes a zero angle of attack to descend and accelerate to satisfy the
kinematic condition. During the � nal phase of the maneuver, the

Fig. 4 Trajectories of the evader and pursuer for case with pointing
constraint alone (maximum thrust vectoring angle = 20 deg).

Fig. 5 Velocity history for case with pointing and kinematic con-
straints.

Fig. 6 Control variables history for case with pointing and kinematic
constraints.

Fig. 7 Control variables history for case with pointing,kinematic, and
following constraints.

Fig. 8 Trajectories of the evader and pursuer for case with pointing,
kinematic, andfollowingconstraints(maximumthrust vectoringangle=
20 deg).

evader increases the angle of attack, aligns its velocity to the con-
straint value, and points toward the pursuer, which requires a very
high angle of attack because the pursuer is close and above.

Adding the followingconstraintEq. (14) to the pointingand kine-
matic constraints does not dramatically change the angle-of-attack
history or the trajectory, though it does signi� cantly increase the
maneuver time. Figure 7, showing angle of attack for this case, is
very similar to the correspondingresult shown in Fig. 6, except that
at the end the requirementof horizontal� ight reduces the � nal angle
of attack. The trajectories of the evader and pursuer are shown in
Fig. 8.

Thrust vectoring ability is used to enhance not only the combat
maneuverability, but also aircraft stability in the post-stall region.
In addition, an increase in the thrust vectoring authority always
reduces the time required for the maneuver, as shown in Fig. 9, that
is, using the thrust vectoring ability decreases the duration that the
evader is followed by the pursuer. In combat that would, of course,
be bene� cial to the evader.
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Fig. 9 Sensitivity of maneuver time to thrust vectoring capability:
P, case with pointing constraint; P+K, case with pointing and kinematic
constraints; and P+K+F, case with pointing, kinematic, and following
constraints.

Fig. 10 Control variables history in case I.

Fig. 11 Velocity history in case IV.

Because the aircraft, initial conditions, and terminal conditions
were in some instancesmade the same as thoseMurayamaand Hull7

used in theirresearcha directcomparisonof resultsis possible.(Note
that the names case I, case II, etc., are those used in Ref. 7.)

For case I, employing the horizontal distance constraint (15),
the control time history in this research (shown in Fig. 10) is
qualitatively different from that of Murayama and Hull (cf. Fig. 4
in Ref. 7). Despite this, the � nal time for the maneuver found in this
research, 8.33 s, is essentially equal to their result.

For case II, employing the horizontaldistanceand followingcon-
straints (15) and (14), the results for the control and state variable
histories are qualitatively the same. However, there is a small dif-
ference in the � nal time of the maneuver, 8.97 s in this research vs
9.3 s in the Murayama and Hull research.7

For case IV, employingthe horizontaldistance,kinematic,follow-
ing, and altitude constraints (15), (14), (13) and (16), the velocity
history (Fig. 11) is different from that found by Murayama and Hull
(cf. Fig. 7 in Ref. 7) as is the control time history. The � nal time for

the maneuver in this research,13.60 s, is substantiallydifferentfrom
(and improvedfrom) that in their research,whichwas 16.3 s (Ref. 7).

These differences may be explained by the solution method in
this research using very accurate, high-order, implicit integration.
The Murayama and Hull convergencetolerance7 is 10 ¡ 4 , whereas in
this research10 ¡ 8 is used. In addition, this researchuses many more
discretecontrolvariables,81 vs11 forMurayamaandHull,7 over the
maneuver time span, thus capturing better the control time history.

Conclusions
With a model aircraft similar to an F-16, but with the capabilityof

poststall� ight,theminimum-time,vertical-plane,evasive–offensive
maneuverhasbeen found.The evaderaircraftquicklyexchangespo-
sition so that it becomes the pursuer.The optimal trajectoriesand the
angle-of-attackhistory of the airplane qualitatively resemble those
describedas the cobramaneuver.Thrust vectoringauthorityreduces
the � ight time for the evasive–offensive maneuver, decreasing the
exposure of the evader to attack by the pursuer.

Perhaps the most signi� cant result is that the DCNLP method has
solved this problem successfully and robustly for a variety of ter-
minal constraints. We thus recommend it as an appropriatemethod
for trajectory optimization for maneuverable aircraft.

For futurestudy,theequationsofmotionshouldbe expandedfrom
a point-mass model to a rigid-body model. The principal effect of
this improvementwouldbe to moderatethe initialrapidnose-upmo-
tion, which is nearly instantaneousin this work, and, thus, generate
a more accurate � ight-path. A more ambitious improvement would
be to introduce a differential game formulation to this problem that
can deal with the pursuer as a realistic, maneuvering aircraft and
� nd optimal trajectories for both evader and pursuer.
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